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1 The Discrete
Revolution

1.1 My Golden Age of Garbage

What is usually called the “computer revolution” is really about
much more—it’s about a radical conversion of our view of the
world from continuous to discrete. As for your author, my
entrance into this world couldn’t have been timed better to
observe the apparently sudden transformation. I arrived in 1939,
a few months before Hitler invaded Poland. At that time the stage
had been set, rather subtly and gradually, for the development of
things digital, and the pressure of the ensuingwar years propelled
us all, not so subtly and not so gradually, into what we now know
as the Digital Age. This book is about the most basic ideas and
principles behind the change. Why did the world change in such
a fundamental way from analog to digital, and where might we
humans—a species itself built along both analog anddigital lines—
be headed?

I apologize for the rather dark beginning, but it’s a fact that the
dirty fingers of war have never failed to leave their prints on the
annals of what we term “progress.” The dawn of the computer age
is closely linked to decryption efforts inWorldWar II, as well as to
the development of the atomic bomb.

On August 6, 1945, I was only dimly aware of the fact that I was
in New Jersey and not Japan, where bombardier Thomas Ferebee
was watching Hiroshima’s Aioi Bridge in the crosshairs of his
Norden bombsight. The bombsight, which subsequently released
thefirst uranium-fission atomic bombandbegan the end ofWorld
War II, was an analog computer. It solved the equations of motion
that determined the path of the bomb, using things like cams and
gears, a gyroscope, and a telescope, all mechanical devices. But
it was a computer nevertheless, although applying the term to
a mess of moving steel parts might surprise some people today.
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Well into the 1950s there were two kinds of computers: analog
and digital. In fact, analog computers of the electronic sort were
the only way to solve certain kinds of complicated problems, and
were, in a handful of situations, very useful. Electronic analog
computers were programmed by plugging wires into a patch
panel, which was like a telephone switchboard (you may have
seen one in an old movie), and by the time any interesting prob-
lem was running, the patch panel was a rat’s nest.

But before the mid-twentieth century everything was analog;
digital just hadn’t been invented.1 The most important piece of
information technology I knew as a child was the radio, very
analog at the time, and itwasmy remarkable piece of good fortune
when the postwar engines of production turned to consumer
goods, and consumers bought new, streamlined, plastic radios.
Garbage night meant that the monstrous mahogany console
radios of the 1930s could often be found curbside—with booming
bass, hardly any treble because of the limitations of AM broad-
casting, and all manner of interesting electronic parts inside.2

That was how I learned to love the glow of vacuum tubes and
the aroma of hot rosin-core solder congealing around the twisted
leads of condensers (as capacitors were called), resistors, coils,
and other more exotic components. Sometimes it was an autopsy
that I performed on these found radios, but often it was a vivi-
section, since many of them worked, or could be made to work,
excellently. Some of these lucky finds even had shortwave bands,
and garbage night turned out to be my gateway to the world at
large.

It was all analog.When television came, that, too,was all analog.
So were telephones. There just wasn’t anything else.

1.2 Nostalgia and the Aesthetics of Technology

Video and audio signals fly in and out of our brains all day
long, and devices that process those signals—radio, television,
recorded film andmusic players, telephones—were all digitized in
the latter half of the twentieth century; that is, within my lifetime.
One consequence is that the devices we use every day for what is
now called digital signal processing have more or less converged
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to the same, rather dull-lookingmachine—essentially a small chip
behind a screen, in a plastic case, occasionally with a couple
of wires hanging out. In contrast, in the good old days radios
were radios, television sets were television sets, cameras cameras,
telephones telephones. You could tell what a device did by looking
at it. And sometimes you would need an elephant to make it
portable: the Stromberg Carlson console radio I lugged homewith
the help of my friends was crafted with a sturdy wooden cabinet,
housing a loudspeaker with a huge electromagnet, a large lit dial,
and hefty knobs that gave the operator the feeling of controlling
an important piece of equipment—to a child, and perhaps to a
grown-up as well, a spaceship.

My favorite effect was the magic eye tuning indicator, usually a
6E5 vacuum tube that had a fluorescent screen at its end, visible
in a circular hole on the front panel of the radio. It glowed green
with a dark crescent that contracted in proportion to the signal
strength. Carefully tuning a station to reduce the crescent to a
narrow slit was a joyful experience, especially in a dark room
where the eerie glow did seem magical for sure. Punching in the
frequency (or URL) of a radio station just does not provide the
same tactile and visual pleasure. If your childhood came after
such electronic apparatus, you don’t knowwhat I’m talking about;
such is the nature of nostalgia. No doubt the iPhone will stimulate
similar feelings fifty years from now, when signals may very well
go directly to our brains without the need for any beautiful little
intermediary machines.

Of course there is a lively market for retro style and retro
devices; certain cults have grown around the disappearance of,
for example, shellac, vinyl, and analog tape recordings, or film
cameras and the once pervasive technology of chemical-based
photography. It’s common to hear that vacuum-tube amplifiers
have a “warmer” sound, although it’s not certain howmuch of the
warmth is due to distortion from the inherent nonlinearity of the
vacuum-tube analog technology, or the psychological glow from
the hot tubes themselves.

Sometimes the nostalgic longing approaches the mystical.
Water Lily Acoustics produces superb recordings of Indian clas-
sical music, and they go through great pains to keep the sound
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recording free of the digital taint until the very last step in the
process. For example, the booklet for a compact disc recording
of Ustad Imrat Khan offers the following assurance:3

This is a pure analog recording done exclusively with custom-
built vacuum-tube electronics. The microphone set-up was
the classic Blumlein arrangement. No noise reduction, equal-
ization, compression, or limiting of any sort was used in the
making of this recording.

The booklet goes on to describe the microphones (which use
tubes), recorder (AmpexMR70, half-inch, two-track, 15-inch-per-
second tape, using vacuum tubes called nuvistors), and so on.

Spiritual values aside, a good analog sound recording, or, for
thatmatter, a good analog photograph takenwith filmandprinted
well, can be, technically, a lot better than a bad digital recording
or a bad digital photograph. We have much more to say about the
ultimate and practical limitations of analog and digital technology
as we go along.

1.3 Some Terminology

So far, we’ve been using the terms digital and analog rather
loosely. Before going further, we need to clarify this terminology.
For our purposes, digital means that a signal of interest is being
represented by a sequence or array of numbers; analog means
that a signal is represented by the value of some continuously
variable quantity. This variable can be the voltage or current in
an electrical circuit, say, or the brightness of a scene at some
point, or temperature, pressure, velocity, and so on, as long as its
value is continuously variable. All the possible values of a digital
signal can be counted, and there is a definite gap between them;
those of an analog variable cannot be counted, and there is no
definite gap between them. Generally, we use discrete (actually
“discrete-valued”) to mean digital and continuous (actually
“continuous-valued”) to mean analog, although this overlooks
some distinctions that are not important at this point.

When you buy a wristwatch or a clock, for example, you have a
choice between an “analog display” and a “digital display.” This is
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exactly the sense in which we use the terms—but take note of the
fact that we refer to the display and not the internal mechanism of
the timekeeper. A clock with an analog display has hands that can
move continuously, whereas a digital display shows numbers that
change discontinuously, which is another way to say suddenly.
The hands of a clock actually represent time by the rotational
position of gears. These days, the usual clock with an analog
display has an internal timekeeping mechanism that is digital
(except for old-fashioned windup clocks). But at one point there
were the opposite kinds of clocks, with analog mechanisms and
digital displays—usually using gears and cams to flip displayswith
numbers printed on them.

On the morning of “Pi Day” (March 14) of 2015, there was a
moment a bit after 9:26 and 53 seconds when the time could be
written 3.14159265358979...; that is, π. The moment was fleeting
to say the least; it was infinitesimally brief. And it will never occur
again. Ever. If you were watching the hands of a clock with an
analog display, you might have tried to take a photo at the exact
moment of π, but the photo would have taken some finite time,
and you would have necessarily blurred the second hand. That is
an inevitable consequence ofmeasuring an analog quantity of any
kind.

Very commonly, audio and video signals are represented by
voltages, either in a computer, smartphone, copper cable, or some
kind of electrical circuit like those in an amplifier. This is the
usual way that such signals are recorded by microphones and
video cameras, and the resulting signals are transmitted and
reproduced using voltages in electrical circuits. A microphone
converts a sound pressure wave in the air to a time-varying
voltage. A video camera converts a light image into an array of
time-varying voltages. These audio and video signals usually start
their lives out as analog signals and are converted to digital form
after their initial capture, assuming that they are going to be
processed in some way in digital form.

The device that converts an analog signal to digital form is
called, naturally, an analog-to-digital converter (A-to-D converter),
and the opposite operation is performed by a digital-to-analog
converter (D-to-A converter). Thus, for example, the light-sensitive
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screen in a digital camera is really an A-to-D converter, whereas
your computer monitor is really a D-to-A converter.

I’ll try to be clear about what I mean when we use the terms
digital, analog, discrete, and continuous, but I should mention some
possible sources of confusion. First, it often happens that it is
time itself that is thought of as discrete or continuous, rather than
the values of a signal. When there is any possible confusion, I
will state explicitly that time is being considered. Second, there
is the awkward fact that standardmathematical terminology uses
the term continuous in a slightly different way. Mathematically
speaking, a curve is “continuous” if it does not jump suddenly
from one value to another but rather changes “smoothly.” The
reader who has studied calculus will be aware of this alternate
interpretation, but will not be confused by it.

Finally, the term discrete is used by physicists in another sense.
A most important example of this usage comes up when we ask
the question, “What is light?” The question has puzzled scien-
tists for centuries. Sometimes light behaves like waves; this is
evident when we observe diffraction rings, for example. If we
aim a narrow light beam (say, from a laser) through a pinhole,
and project the result on a screen, we get concentric rings that
die out in intensity as we travel from the center. It turns out
that this result is easy to explain if we treat light as a wave
but very difficult to explain if we treat light as particles. On the
other hand, if we aim a light at a detector and gradually decrease
its intensity, eventually the light does not become dimmer and
dimmer without limit. At some point the light begins to arrive in
chunks: Click! . . .Click! You can hear such clicks if you receive the
light with a sensitive detection device connected to an amplifier
and speaker. This experiment and many others provide evidence
that light consists of particles; a wavewould fade out, diminishing
in intensity indefinitely. The particle of light, called a photon, is
indivisible. There is no such thing as half a photon or half a click.
A click occurs or it doesn’t. All the clicks are the same. In such
cases we say that light is discrete; it occurs as discrete particles.

All chunks ofmatter—atoms,molecules, electrons, protons, and
so on—also behave in this same seemingly paradoxical way. The
puzzle, sometimes known as wave-particle duality, was ultimately
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explained after a great deal of hard work by some very smart
people about a hundred years ago. The explanation is called
quantum mechanics, which not only revolutionized physics but
changed the way we think about the world.

Quantum mechanics, and physics in general, plays an impor-
tant part in our story, and we return to it often. It is the science
of the very small. As put by Jean-Louis Basdevant, “Bill Gates,
the richest man in the world, made his fortune because he was
able to use [micro- and nanotechnologies]; quantum mechanics
accounts for at least 30% of each of his dollars.”4

More about quantum mechanics later. We next turn to the
fundamental role of physical noise in limiting the performance of
analog devices, and the way in which digital devices circumvent
the problem.
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