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State of the Art

We are about to embark on a journey through the last five years of business forecasting 

literature, with over 60 selections from journals, books, whitepapers, and original con-

tributions written just for this collection. The biggest single topic area – reflecting the 

intense interest from practitioners and researchers alike – is the role of artificial intelli-

gence and machine learning in business forecasting. But traditional forecasting topics like 

modeling, performance evaluation, and process remain vital, and are not ignored. We’ve 

sought to include the compelling new ideas, and the divergent viewpoints, to broadly 

represent advances in the business forecasting profession over the past five years.

But before we begin the journey, it is worth a few moments to review and reflect 

upon where we are at now – business forecasting’s state of the art.

* * *

FORECASTING IN SOCIAL SETTINGS: THE STATE OF THE ART*

Spyros Makridakis, Rob J. Hyndman, and Fotios Petropoulos

This paper provides a nonsystematic review of the progress of forecasting in social (i.e., non-physical 
science) settings – which includes business forecasting. It is aimed at someone outside the field who 
wants to understand and appreciate the results of 2018’s M4 Competition, and the M4’s historical context 
and significance. As such, it forms a survey paper regarding the state of the art of the business forecasting 
discipline, and provides a perfect launch point for the chapters to follow.

The review discusses the recorded improvements in forecast accuracy over time, the need to capture 
forecast uncertainty, and things that can go wrong with predictions. It classifies the knowledge achieved over 
recent years into (i) what we know, (ii) what we are not sure about, and (iii) what we don’t know. In the first 
two areas, this article explores the difference between explanation and prediction, the existence of an optimal 
model, the performance of machine learning methods on time series forecasting tasks, the difficulties of 
predicting nonstable environments, the performance of judgment, and the value added by exogenous vari-
ables. The article concludes with the importance of (thin and) fat tails, the challenges and advances in causal 
inference, and the role of luck.

Written by three of the very top contributors to the field, this article delivers an exceptional recap of our 
current knowledge about business forecasting, along with an extensive section of references for further study.
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“There’s no chance that the iPhone is going to get any significant market share.”

—Steve Ballmer, CEO Microsoft, April 2007

I. THE FACTS

A Brief History of Forecasting

In terms of human history, it is not that long since forecasting moved from the religious, 

the superstitious, and even the supernatural (Scott, 2015) to the more scientific. Even 

today, though, old fortune-telling practices still hold among people who pay to receive 

the “prophetic” advice of “expert” professional forecasters, including those who claim 

to be able to predict the stock market and make others rich by following their advice. 

In the emerging field of “scientific” forecasting, there is absolute certainty about two 

things. First, no one possesses prophetic powers, even though many pretend to do so; 

and, second, all predictions are uncertain: often the only thing that varies among such 

predictions is the extent of such uncertainty.

The field of forecasting outside the physical sciences started at the end of the 

nineteenth century with attempts to predict economic cycles, and continued with efforts 

to forecast the stock market. Later, it was extended to predictions concerning business, 

finance, demography, medicine, psychology, and other areas of the social sciences. The 

young field achieved considerable success after World War II with Robert Brown’s work 

(Brown, 1959, 1963) on the prediction of the demand for thousands of inventory items 

stored in navy warehouses. Given the great variety of forecasts needed, as well as the 

computational requirements for doing so, the work had to be simple to carry out, using 

the mechanical calculators of the time. Brown’s achievement was to develop various 

forms of exponential smoothing that were sufficiently accurate for the problems faced 

and computationally light. Interestingly, in the Makridakis and Hibon (1979) study and 

the subsequent M1 and M2 competitions, his simple, empirically-developed models 

were found to be more accurate than the highly sophisticated ARIMA models of Box 

and Jenkins (Box, Jenkins, Reinsel, and Ljung, 2015).

As computers became faster and cheaper, the field expanded, with econometri-

cians, engineers and statisticians all proposing various advanced forecasting approaches, 

under the belief that a greater sophistication would improve the forecasting accuracy. 

There were two faulty assumptions underlying such beliefs. First, it was assumed that 

the model that best fitted the available data (model fit) would also be the most accu-

rate one for forecasting beyond such data (post-sample predictions), whereas actually 

the effort to minimise model fit errors contributed to over-parameterisation and over-

fitting. Simple methods that captured the dominant features of the generating pro-

cess were both less likely to overfit and likely to be at least as accurate as statistically 

sophisticated ones (see Pant and Starbuck, 1990). The second faulty assumption was 

that of constancy of patterns/relationships – assuming that the future will be an exact 
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continuation of the past. Although history repeats itself, it never does so in precisely the 

same way. Simple methods tend to be affected less by changes in the data generating 

process, resulting in smaller post-sample errors.

Starting in the late 1960s, significant efforts were made, through empirical and 

other studies and competitions, to evaluate the forecasting accuracy and establish some 

objective findings regarding our ability to predict the future and assess the extent of 

the uncertainty associated with these predictions. Today, following many such studies/

competitions, we have a good idea of the accuracy of the various predictions in the 

business, economic and social fields (and also, lately, involving climate changes), as 

well as of the uncertainty associated with them. Most important, we have witnessed 

considerable advances in the field of forecasting, which have been documented ade-

quately in the past by two published papers. Makridakis (1986) surveyed the theoret-

ical and practical developments in the field of forecasting and discussed the findings of 

empirical studies and their implications until that time. Twenty years later, Armstrong 

(2006) published another pioneering paper that was aimed at “summarizing what has 

been learned over the past quarter century about the accuracy of forecasting methods” 

(p.  583) while also covering new developments, including neural networks, which 

were in their infancy at that time. The purpose of the present paper is to provide an 

updated survey for non-forecasting experts who want to be informed of the state of the 

art of forecasting in social sciences and to understand the findings/conclusions of the 

M4 Competition better.

Some of the conclusions of these earlier surveys have been overturned by 

subsequent additional evidence. For example, Armstrong (2006) found neural nets and 

Box-Jenkins methods to fare poorly against alternatives, whereas now both have been 

shown to be competitive. For neural nets, good forecasts have been obtained when 

there are enormous collections of data available (Salinas, Flunkert, and Gasthaus, 

2017). For Box-Jenkins methods, improved identification algorithms (Hyndman and 

Khandakar, 2008) have led to them being competitive with (and sometimes better 

than) exponential smoothing methods. Other conclusions have stood the test of time: 

for example, that combining forecasts improves the accuracy.

When Predictions Go Wrong

Although forecasting in the physical sciences can attain amazing levels of accuracy, 

such is not the case in social contexts, where practically all predictions are uncertain 

and a good number can be unambiguously wrong. This is particularly true when binary 

decisions are involved, such as the decision that faces the U.S. Federal Reserve as to 

whether to raise or lower interest rates, given the competing risks of inflation and 

unemployment. The big problem is that some wrong predictions can affect not only 

a firm or a small group of people, but also whole societies, such as those that involve 

global warming, while others may be detrimental to our health. Ioannidis, a medical 

professor at Stanford, has devoted his life to studying health predictions. His findings 
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are disheartening, and were articulated in an article published in PLoS Medicine entitled 

“Why most published research findings are false” (Ioannidis, 2005).1 A popular piece 

on a similar theme in The Atlantic entitled “Lies, damned lies, and medical science” 

(Freedman, 2010) is less polite. It summarizes such findings as: “Much of what medical 

researchers conclude in their studies is misleading, exaggerated, or flat-out wrong.” 

Freedman concluded with the question, “why are doctors – to a striking extent – still 

drawing upon misinformation in their everyday practice?”

A recent case exemplifying Ioannidis’ conclusions is the findings of two studies 

eight years apart of which the results were contradictory, making it impossible to know 

what advice to follow in order to benefit from medical research. In 2010, Micha, Wallace, 

and Mozaffarian (2010) published a meta-analysis that reviewed six studies which eval-

uated the effects of meat and vegetarian diets on mortality, involving a total of more 

than 1.5 million people. It concluded that all-cause mortality was higher for those who 

ate meat, mainly red or processed meat, daily. However, a new study published in 2018 

(Mente and Yusuf, 2018), using a large sample of close to 220,000 people, found that 

eating red meat and cheese reduced cardiovascular disease by 22% and decreased the 

risk of early death by 25% (with such large sample sizes, all differences are statisti-

cally significant). If conflicting medical predictions, based on substantial sample sizes 

and with hundreds of millions of dollars having been spent on designing and conducting 

them, are widespread, what are we to surmise about studies in other disciplines that are 

less well funded, utilize small sample sizes, or base their predictions on judgment and 

opinion? Moreover, if the conclusions of a medical study can be reversed in a period 

of just eight years, how can we know that those of new studies will not produce the 

same contradictions? Recommendations about the treatment of disease are based on the 

findings of medical research, but how can such findings be trusted when, according to 

Ioannidis, most of them are false? Clearly, there is a predictability problem that extends 

beyond medicine to practically all fields of social science, including economics (Camerer 

et al. 2016, Dewald, Thursby, and Anderson, 1986). Fortunately, empirical studies in 

the field of forecasting have provided us with some objective evidence that allows us to 

both determine the accuracy of predictions and estimate the level of uncertainty.

There are several famous examples of forecasting errors, including Ballmer’s fore-

cast quoted earlier about the iPhone, which is possibly the most successful of all prod-

ucts ever marketed. In 1798, Malthus predicted that we were confronted by mass 

starvation, as the population was growing geometrically while food production was 

increasing only arithmetically. Today’s material abundance and decreases in population 

growth in most advanced countries have been moving in the opposite direction to his 

predictions. In 1943, Thomas Watson, IBM’s president, made his infamous prediction: 

“I think there is a world market for maybe five computers,” missing it by about a bil-

lion times if all computers, including smartphones, are counted (see also Schnaars, 

1989). However, even recent predictions by professional organisations that specialise 

in forecasting, using modern computers and well-trained, PhD-holding forecasters, can 

go wrong, as can be seen from the complete failure of these organisations to predict 
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the great 2007/2008 recession and its grave implications. The same has been true 

with technological forecasting, which failed to predict, even a few decades earlier, the 

arrival and widespread usage of the three major inventions of our times: the computer, 

the internet, and the mobile phone. Judgmental predictions have been evaluated by 

Tetlock (2006), who has compared the forecasts of experts in different macroeconomic 

fields to forecasts made by well-informed laity or those based on simple extrapolation 

from current trends. He concluded that not only are most experts not more accurate, 

but they also find it more difficult to change their minds when new evidence becomes 

available.

After surveying past successes and failures in forecasting, what we can conclude is 

that there is a significant amount of uncertainty in all of our predictions, and that such 

uncertainty is underestimated greatly for two reasons. First, our attitude to extrapo-

lating in a linear fashion from the present to the future, and second, our fear of the 

unknown and our psychological need to reduce the anxiety associated with such a fear 

by believing that we can control the future by predicting it accurately (known as the 

illusion of control, see Langer, 1975). Thus, it becomes imperative to be aware of the 

difficulty of accurate predictions and the underestimation of the uncertainty associated 

with them, in order to be able to minimise this bias. The field of quantitative forecasting 

has the potential advantage that it may be possible to assess the accuracy of forecasts 

and the level of uncertainty surrounding them by utilising information from empirical 

and open forecasting competitions.

Improving Forecasting Accuracy over Time

The scientific approach to forecasting in the physical sciences began with Halley’s comet 

predictions in the early 1700s (Halleio, 1704), which turned out to be remarkably accu-

rate. Other forecasts followed, including the somewhat less successful meteorological 

forecasts of Beaufort and FitzRoy in the late 1850s (Burton, 1986). These were highly 

controversial at the time, and FitzRoy in particular was criticised heavily, and subse-

quently committed suicide. Nevertheless, he left a lasting legacy, including the word 

“forecast,” which he had coined for his daily weather predictions. Over the 150 years 

since, there has been extraordinary progress in improving the forecast accuracy not 

only in meteorology (Kistler et al., 2001; Saha et al., 2014) but also in other physical 

sciences, as the underlying physical processes have come to be understood better, the 

volume of observations has exploded, computing power has increased, and the ability 

to share information across connected networks has become available.

The social sciences are different. First, there is usually a limited theoretical or 

quantitative basis for representing a causal or underlying mechanism. Thus, we rely 

on statistical approximations that roughly describe what we observe, but may not rep-

resent a causal or underlying mechanism. Second, despite the deluge of data that is 

available today, much of this information does not concern what we want to forecast 

directly. For example, if we wish to predict the GDP next quarter, we may have an 
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enormous amount of daily stock market data available, but no daily data on expendi-

tures on goods and services. Third, what we are trying to forecast is often affected by 

the forecasts themselves. For example, central banks might forecast next year’s housing 

price index but then raise interest rates as a result, thus leading the index to be lower 

than the forecast. Such feedback does not occur in astronomical or weather forecasts.

For these reasons, social science forecasts are unlikely ever to be as accurate as 

forecasts in the physical sciences, and the potential for improvements in accuracy is 

somewhat limited. Nevertheless, increases in computing power and a better under-

standing of how to separate signal from noise should lead to some improvements in 

forecast accuracy. However, this does not appear to have been the case, at least for 

macroeconomic forecasting (Fildes and Stekler, 2002; Heilemann and Stekler, 2013; 

Stekler, 2007).

On the other hand, time series forecasting has improved demonstrably over the last 

30 years. We can measure the change through the published accuracies of forecasting 

competitions over the last 40 years, beginning with the first Makridakis competition 

(Makridakis et al., 1982), then the M3 competition (Makridakis and Hibon, 2000), and 

finally the recent M4 competition (Makridakis, Spiliotis, and Assimakopoulos, 2018a). 

In measuring the forecast accuracy improvement, we have applied the best-performing 

methods from each competition to the data from previous competitions in order to see 

how the methods have improved over time.

However, these comparisons are not straightforward because the forecast accu-

racy measures used were not consistent between competitions. In fact, there is still 

no agreement on the best measure of the forecast accuracy. We will therefore com-

pare results using the MAPE (used in the first competition), the sMAPE (used in the 

M3 competition), and the MASE. The M4 competition used a weighted average of the 

sMAPE and MASE values. All measures are defined and discussed by Hyndman and 

Koehler (2006) and Hyndman and Athanasopoulos (2018).

In the first Makridakis competition (Makridakis et al., 1982), the best-performing 

method overall (as measured by MAPE) was simple exponential smoothing applied to 

deseasonalized data, where the deseasonalization used a classical multiplicative decom-

position (Hyndman and Athanasopoulos, 2018); this is denoted by DSES. For non-

seasonal data, DSES is equivalent to simple exponential smoothing.

In the M3 competition, the best method (as measured by sMAPE), and which is in 

the public domain, was the Theta method (Assimakopoulos and Nikolopoulos, 2000). 

We applied the Theta method using the thetaf() implementation from the forecast 

package for R (Hyndman et al., 2018), to ensure consistent application to all data sets.

In the M4 competition, the best-performing method (as measured by a weighted 

average of sMAPE and MASE) for which we had R code available was the FFORMA 

method (Montero-Manso, Athanasopoulos, Hyndman, and Talagala, 2020), which 

came second in the competition.

In addition to these methods, we also included, for comparison, the popular auto.

arima() and ets() methods (Hyndman and Khandakar, 2008; Hyndman et al., 2002), as 
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implemented by Hyndman et al. (2018), along with a simple average of the forecasts 

from these two methods (denoted “ETSARIMA”). We also include two simple bench-

marks: naive and naive on the seasonally adjusted data (naive 2).

When we apply these methods to the data from all three competitions, we can see 

how the forecast accuracy has changed over time, as is shown in Table I.1. Note that 

the mean values of MAPE, sMAPE, and MASE have been calculated by applying the 

arithmetic mean across series and horizons simultaneously. Other ways of averaging 

the results can lead to different conclusions, due to greater weights being placed on 

some series or horizons. It is not always obvious from the published competition results 

how these calculations have been done in the past, although in the case of the M4 com-

petition, the code has been made public to help to avoid such confusion.

There are several interesting aspects to this comparison.

JJ DSES did well on the M1 data and is competitive with other non-combining 

methods on the M3 and M4 data according to the MAPE and sMAPE, but it does 

poorly according to the MASE.

JJ While Theta did well on the M3 data (winner of that competition), it is less com-

petitive on the M1 and M4 data.

JJ The most recent method (FFORMA) outperforms the other methods on every 

measure for the M1 and M4 competitions, and on all but the MAPE measure for 

the M3 competition.

JJ The ETSARIMA method (averaging the ETS and ARIMA forecasts) is almost as good 

as the FFORMA method in terms of MASE, and is easier and faster to compute.

JJ The results are relatively clear-cut across all competitions (in the order displayed) 

using the MASE criterion, but the results are less clear with the other accuracy 

criteria.

While there is some variation between periods, the good performances of FFORMA 

and ETSARIMA are relatively consistent across data sets and frequencies. Clearly, 

progress in forecasting methods has been uneven, but the recent M4 competition has 

helped to advance the field considerably in several ways, including: (1) encouraging 

the development of several new methods; and (2) providing a large set of data in order 

to allow detailed comparisons of various forecasting methods over different time gran-

ularities.

The Importance of Being Uncertain

No forecasts are exact, and so it is important to provide some measure of the forecast 

uncertainty. Unless such uncertainty is expressed clearly and unambiguously, fore-

casting is not far removed from fortune-telling.

The most general approach to expressing the uncertainty is to estimate the “forecast 

distribution” – the probability distribution of future observations conditional on the 
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information available at the time of forecasting. A point forecast is usually the mean 

(or sometimes the median) of this distribution, and a prediction interval is usually 

based on the quantiles of this distribution (Hyndman and Athanasopoulos, 2018). As a 

consequence, forecasting has two primary tasks:

1. To provide point forecasts which are as accurate as possible;

2. To specify or summarise the forecast distribution.

Until relatively recently, little attention was paid to forecast distributions, or mea-

sures of the forecast distribution accuracy. For example, there was no measure of the 

distributional forecast uncertainty used in the M1 and M3 competitions, and it is still 

rare to see such measures used in Kaggle competitions.

Prediction Interval Evaluation

The simplest approach to summarising the uncertainty of a forecast distribution is 

to provide one or more prediction intervals with a specified probability coverage. 

However, it is well known that these intervals are often narrower than they should 

be (Hyndman et al., 2002); that is, that the actual observations fall inside the inter-

vals less often than the nominal coverage implies. For example, the 95% prediction 

intervals for the ETS and ARIMA models applied to the M1 and M3 competition 

data, obtained using the automatic procedures in the forecast package for R, yield 

coverage percentages that are as low as 76.8%, and are never higher than 95%. 

Progress has been made in this area too, though, with the recent FFORMA method 

(Montero-Manso et al., 2020) providing an average coverage of 94.5% for these data 

sets. Figure I.1 shows the coverages for nominal 95% prediction intervals for each 

method and forecast horizon when applied to the M1 and M3 data. ARIMA models 

do particularly poorly here.

It is also evident from Figure I.1 that there are possible differences between the two 

data sets, with the percentage coverages being lower for the M1 competition than for 

the M3 competition.
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There are at least three reasons for standard statistical models’ underestimations of 

the uncertainty.

1. Probably the biggest factor is that model uncertainty is not taken into account. 

The prediction intervals are produced under the assumption that the model is 

“correct,” which clearly is never the case.

2. Even if the model is specified correctly, the parameters must be estimated, and 

also the parameter uncertainty is rarely accounted for in time series forecast-

ing models.

3. Most prediction intervals are produced under the assumption of Gaussian errors. 

When this assumption is not correct, the prediction interval coverage will usu-

ally be underestimated, especially when the errors have a fat-tailed distribution.

In contrast, some modern forecasting methods do not use an assumed data gen-

erating process to compute prediction intervals. Instead, the prediction intervals from 

FFORMA are produced using a weighted combination of the intervals from its compo-

nent methods, where the weights are designed to give an appropriate coverage while 

also taking into account the length of the interval.

Coverage is important, but it is not the only requirement for good prediction inter-

vals. A good prediction interval will be as small as possible while maintaining the spec-

ified coverage. Winkler proposed a scoring method for enabling comparisons between 

prediction intervals that takes into account both the coverage and the width of the 

intervals. If the 100(1−α)% prediction interval for time t is given by [l
t
 , u

t
], and y

t
 is 

the observation at time t, then the Winkler (1972) score is defined as the average of:
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This penalises both for wide intervals (since u
t
 − l

t
 will be large) and for non-cover-

age, with observations that are well outside the interval being penalised more heavily. 

However, although this was proposed in 1972, it has received very little use until 

recently, when a scaled version of it was used in the M4 competition. The lower the 

score, the better the forecasts. For a discussion of some of the problems with interval 

scoring, see Askanazi, Diebold, Schorfheide, and Shin (2018).

Forecast Distribution Evaluation

To the best of our knowledge, the only forecasting competitions that have evaluated 

whole forecast distributions have been the GEFCom2014 and GEFCom2017 energy 

forecasting competitions (Hong et al., 2016). Both used percentile scoring as an evalu-

ation measure.
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For each time period t throughout the forecast horizon, the participants provided 

percentiles q
i,t
, where i = 1, 2, . . . , 99. Then, the percentile score is given by the pinball 

loss function:

 

L q y

i
q y y q

i
y q

i t t

i t t t i t

t i t

,

, ,

,

,

1
100

100
yy qt i t,

 

This score is then averaged over all percentiles and all time periods in order to 

evaluate the full predictive density. If the observations follow the forecast distribu-

tion, then the average score will be the smallest value possible. If the observations 

are more spread out or deviate from the forecast distribution in some other way, then 

the average score will be higher. Other distribution scoring methods are also available 

(Gneiting and Raftery, 2007).

Without a history of forecast distribution evaluation, it is not possible to explore how 

this area of forecasting has improved over time. However, we recommend that future 

forecast evaluation studies include forecast distributions, especially in areas where the 

tails of the distribution are of particular interest, such as in energy and finance.

II. WHAT WE KNOW

On Explaining the Past versus Predicting the Future

Forecasting is about predicting the future, but this can only be done based on information 

from the past, which raises the issue of how the most appropriate information and the 

corresponding model for predicting the future should be selected. For a long period, 

and for lack of a better alternative, it was believed that such model should be chosen 

according to how well it could explain, that is, fit, the available past data (somewhat 

like asking a historian to predict the future). For instance, in the presentation of their 

paper to the Royal Statistical Society in London, Makridakis and Hibon (1979) had dif-

ficulty explaining their findings that single exponential smoothing was more accurate 

than the Box-Jenkins approach and that a combination of methods was more accurate 

than the individual methods being combined. Theoretically, with the correct model and 

assuming that the future is the same as the past, these findings would not be possible. 

However, this theoretical postulate does not necessarily hold, because the future could 

be quite different from the past. Both the superiority of combining and the higher accu-

racy of exponential smoothing methods relative to ARIMA models were proven again 

in the M1 and M2 competitions. However, some statisticians were still unwilling to 

accept the empirical evidence, arguing that theory was more important than empirical 

competitions, as was expressed powerfully by Priestley, who stated that “we must 

resist the temptation to read too much into the results of the analysis” (Makridakis and 

Hibon, 1979, p. 127).
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The debate ended with the M3 Competition (Makridakis and Hibon, 2000), with its 

3003 time series. Once again, the results showed the value of combining and the superior 

performances of some simpler methods (such as the Theta method) in comparison to 

other, more complicated methods (most notably one particular neural networks appli-

cation). Slowly but steadily, this evidence is being accepted by a new breed of academic 

forecasters and well-informed practitioners who are interested in improving the accu-

racy of their predictions. Moreover, the accuracy of ARIMA models has improved con-

siderably in the M3 and M4 competitions, surpassing those of exponential smoothing 

methods when model selection was conducted using Akaike’s information criterion 

(Akaike, 1977).

As a result, the emphasis has shifted from arguing about the value of competitions 

to learning as much as possible from the empirical evidence in order to improve the 

theoretical and practical aspects of forecasting. The M4 Competition, which is covered 

in detail in this special issue, is the most recent evidence of this fundamental shift in 

attitudes toward forecasting and the considerable learning that has been taking place in 

the field. A number of academic researchers have guided this shift within universities. 

Determined practitioners from companies like Uber, Amazon, Google, Microsoft, and 

SAS, among others, present their advances every year in the International Sympo-

sium on Forecasting (ISF). They are focused on improving the forecasting accuracy and 

harnessing its benefits, while also being concerned about measuring the uncertainty in 

their predictions.

On the (Non)existence of a Best Model

Many forecasting researchers have been on a quest to identify the best forecasting 

model for each particular case. This quest is often viewed as the “holy grail” in fore-

casting. While earlier studies investigated the concept of aggregate selection (Fildes, 

1989), meaning selecting one model for all series within a data set, more recent studies 

have suggested that such an approach can only work for highly homogeneous data 

sets. In fact, as Fildes and Petropoulos (2015) showed, if we had some way of identi-

fying correctly beforehand which model would perform best for each series, we could 

observe savings of up to 30% compared to using the best (but same) model on all series.

Approaches for the individual selection of the best model for each series (or even 

for each series/horizon combination) include information criteria (Hyndman et  al., 

2002), validation and cross-validation approaches (Tashman, 2000), approaches that 

use knowledge obtained from the data to find temporary solutions to the problems 

faced (Fildes and Petropoulos, 2015), approaches based on time series features and 

expected errors (Petropoulos et al., 2014; Wang, Smith-Miles, and Hyndman, 2009), 

and approaches based on expert rules (Adya, Collopy, Armstrong, and Kennedy, 

2001). However, all of these approaches are limited with regard to their input: they are 

attempting to identify the best model for the future conditional on information from 

the past. However, as the previous section highlighted, explaining the past is not the 
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same as predicting the future. When dealing with real data, no well-specified “data gen-

eration processes” exist. The future might be completely different from the past, and 

the previous “best” models may no longer be appropriate. Even if we could identify the 

best model, we would be limited by the need to estimate its parameters appropriately.

In fact, there exist three types of uncertainties when dealing with real forecasting 

situations: model uncertainty, parameter uncertainty and data uncertainty (Petropoulos  

et  al., 2018). In practice, such uncertainties are dealt with by combining models/

methods. As George Box put it, “all models are wrong, but some are useful.” Again and 

again, combinations have been proved to benefit the forecasting accuracy (Clemen, 

1989; Makridakis, 1989; Timmermann, 2006), while also decreasing the variance of 

the forecasts (Hibon and Evgeniou, 2005), thus rendering operational settings more 

efficient. Current approaches to forecast combinations include, among others, com-

binations based on information criteria (Kolassa, 2011), the use of multiple temporal 

aggregation levels (Andrawis et  al., 2011; Athanasopoulos et  al., 2017; Kourentzes 

et  al., 2014), bootstrapping for time series forecasting (Bergmeir, Hyndman, and 

Benítez, 2016) and forecast pooling (Kourentzes, Barrow, and Petropoulos, 2019).

Approaches based on combinations have dominated the rankings in the latest 

instalment of the M competitions. It is important to highlight the fact that one element 

of the success of forecast combinations is the careful selection of an appropriate pool 

of models and their weights. One explanation for the good performance of combina-

tions is that the design of the M competitions requires the nature and history of the 

series to be concealed. This reduces the amount of background information that can be 

applied to the forecasting problem and may give combinations an advantage relative to 

models that are selected individually by series. In fact, as Fildes and Petropoulos (2015) 

have shown, model selection can outperform forecast combinations in certain situa-

tions, such as when a dominant method exists, or under a stable environment. Finally, 

the evidence in the M4 results suggests that hybrid approaches, which are based on 

combining simple time series techniques with modern machine-learning methods at a 

conceptual level (rather than a forecast level), perform very well.

On the Performance of Machine Learning

The hype publicizing the considerable achievements in artificial intelligence (AI) also 

extends to machine learning (ML) forecasting methods. There were high expectations 

that hedge funds that utilized ML techniques would outperform the market (Satariano 

and Kumar, 2017). However, new evidence has shown that their track record is mixed, 

even though their potential is enormous (Asmundsson, 2018).

Although some publications have claimed to show excellent accuracies of ML fore-

casting methods, very often they have not been compared against sensible benchmarks. 

For stock-market data, for example, it is essential to include a naive benchmark, yet 

often this is not done (see, for example, Wang and Wang, 2017). In addition, some 

studies claim high levels of accuracy by hand-selecting examples where the proposed 
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method happens to do well. Even when a reasonably large set of data is used for the 

empirical evaluation and the time series have not been chosen specifically to favour 

the proposed approach, it is essential to consider the statistical significance of any com-

parisons made. Otherwise, conclusions can be drawn from random noise (Pant and 

Starbuck, 1990).

One advantage of large forecasting competitions is that they provide a collection 

of data against which new methods can be tested, and for which published accuracy 

results are available. The data sets are also large enough that statistically significant 

results should be able to be achieved for any meaningful improvements in forecast 

accuracy.

One disadvantage is that the series are a heterogeneous mix of frequencies, lengths 

and categories, so that there may be some difficulty in extracting from the raw results 

the circumstances under which individual methods shine or fall down.

In time series forecasting, the hype has been moderated over time as studies have 

shown that the application of ML methods leads to poor performances in comparison 

to statistical methods (though some ML supporters still argue about the validity of 

the empirical evidence). We are neither supporters nor critics of either approach over 

the other, and we believe that there is considerable overlap between the statistical 

and ML approaches to forecasting. Moreover, they are complementary in the sense 

that ML methods are more vulnerable to excessive variance, while statistical ones 

are more vulnerable to higher bias. At the same time, the empirical evidence to date 

shows a clear superiority in accuracy of the statistical methods in comparison to ML 

ones when applied to either individual time series or large collections of heteroge-

neous time series. In a study using the 1045 monthly M3 series (those utilized by 

Ahmed, Atiya, Gayar, and El-Shishiny, 2010) that consisted of more than 81 observa-

tions, Makridakis, Spiliotis, and Assimakopoulos (2018b) found, using accepted prac-

tices to run the methods, that the most accurate ML methods were less accurate than 

the least accurate statistical one. Moreover, 14 of the ML methods were less accurate 

than naive 2.

ML methods did not do well in the M4 Competition either, with most of them 

doing worse than the naive 2 benchmark (for more details, see Makridakis, Spiliotis, 

and Assimakopoulos, 2020). We believe that it is essential to figure out the reasons 

for such poor performances of the ML methods. One possibility is the relatively large 

number of parameters associated with ML methods compared to statistical methods. 

Another is the number of important choices that are related to the design of ML, which 

are usually made using validation data, as there is no standardised ML approach. The 

time series used in these competitions are generally not particularly long, with a few 

hundred observations at most. This is simply not sufficient for building a complicated 

nonlinear, nonparametric forecasting model. Even if the time series are very long (at 

least a few thousand observations), there are difficulties with data relevance, as the 

dynamics of the series may have changed, and the early part of the series may bias the 

forecasting results.
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Machine learning methods have done well in time series forecasting when fore-

casting an extensive collection of homogeneous data. For example, Amazon uses deep 

learning neural networks to predict product sales (Salinas et al., 2017; Wen et al., 2017) 

by exploiting their vast database of the sales histories of related products, rather than 

building a separate model for the sales of each product.

We expect that future research efforts will work toward making these methods 

more accurate. Both the best and second-best methods of the M4 Competition used ML 

ideas to improve the accuracy, and we would expect that additional, innovative notions 

would be found in the future to advance their utilization.

III. WHAT WE ARE NOT SURE ABOUT

On the Prediction of Recessions/Booms/Non-stable Environments

One area of forecasting that has attracted a considerable amount of attention is that of 

extreme events, which include but are not limited to economic recessions/booms and 

natural disasters. Such events have a significant impact from a socioeconomic perspec-

tive, but also are notoriously tricky to predict, with some being “black swans” (events 

with no known historical precedent).

Take as an example the great recession of 2008. At the end of December 2007, 

BusinessWeek reported that only 2 out of 34 forecasters predicted a recession for 2008. 

Even when the symptoms of the recession became more evident, Larry Kudlow (an 

American financial analyst and the Director of the National Economic Council under 

the Trump administration) insisted that there was no recession. Similarly, the Federal 

Open Market Committee failed to predict the 2008 recession (Stekler and Symington, 

2016). Interestingly, after the recession, most economic analysts, victims of their hind-

sight, were able to provide detailed explanations of and reasons behind the recession, 

while the few “prophets” who did indeed predict the great recession were unable to 

offer equally good predictions for other extreme events, as if their prophetic powers 

had been lost overnight.

Two recent studies have taken some first steps towards predicting market crashes 

and bubble bursts. Gresnigt, Kole, and Franses (2015) model financial market crashes 

as seismic activity and create medium-term probability predictions, which consequently 

feed an early warning system. Franses (2016) proposes a test for identifying bubbles in 

time series data, as well as to indicate whether a bubble is close to bursting.

On the Performances of Humans versus Models

Judgment has always been an integral input to the forecasting process. Earlier studies 

focused on the comparative performances of judgmental versus statistical forecasts, 

when judgment was used to produce forecasts directly. However, the results of such 

studies have been inconclusive. For instance, while Lawrence, Edmundson, and 

O’Connor (1985) and Makridakis et al. (1993) found that unaided human judgment 
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can be as good as the best statistical methods from the M1 forecasting competition, 

Carbone and Gorr (1985) and Sanders (1992) found judgmental point forecasts to 

be less accurate than statistical methods. The reason for these results is the fact that 

well-known biases govern judgmental forecasts, such as the tendency of forecasters 

to dampen trends (Lawrence et al., 2006; Lawrence and Makridakis, 1989), as well as 

anchoring and adjustment (O’Connor, Remus, and Griggs, 1993) and the confusion of 

the signal with noise (Harvey, 1995; Reimers and Harvey, 2011). On the other hand, 

statistical methods are consistent and can handle vast numbers of time series seam-

lessly. Still, judgment is the only option for producing estimates for the future when 

data are not available.

Judgmental biases apply even to forecasters with domain or technical expertise. 

As such, the expert knowledge elicitation (EKE; Bolger and Wright, 2017) literature 

has examined many ways of designing methods so as to reduce the danger of biased 

judgments from experts. Strategies for mitigating humans’ biases include decompos-

ing the task (Edmundson, 1990; Webby, O’Connor, and Edmundson, 2005), offering 

alternative representations (tabular versus graphical formats; see Harvey and Bolger, 

1996) and providing feedback (Petropoulos, Goodwin, and Fildes, 2017).

The previous discussion has focused on judgmental forecasts that are produced 

directly. However, the judgment in forecasting can also be applied in the form of inter-

ventions (adjustments) to the statistical forecasts that are produced by a forecasting 

support system. Model-based forecasts are adjusted by experts frequently in operations/

supply chain settings (Fildes et al., 2009, Franses and Legerstee, 2010). Such revised 

forecasts often differ significantly from the statistical ones (Franses and Legerstee, 

2009); however, small adjustments are also observed, and are linked with a sense of 

ownership of the forecasters (Fildes et al., 2009). Experts tend to adjust upwards more 

often than downwards (Franses and Legerstee, 2010), which can be attributed to an 

optimism bias (Trapero, Pedregal, Fildes, and Kourentzes, 2013), but such upwards 

adjustments are far less effective (Fildes et al., 2009). The empirical evidence also sug-

gests that experts can reduce the forecasting error when the adjustment size is not too 

large (Trapero et al., 2013).

Another point in the forecasting process at which judgment can be applied is that 

of model selection. Assuming that modern forecasting software systems offer many 

alternative models, managers often rely on their judgment in order to select the 

most suitable one, rather than pushing the magic button labelled “automatic selec-

tion” (which selects between models based on algorithmic/statistical approaches, for 

example, using an information criterion). The study by Petropoulos et al. (2018) is the 

first to offer some empirical evidence on the performance of judgmental versus algo-

rithmic selection. When the task follows a decomposition approach (selection of the 

applicable time series patterns, which is then translated to the selection of the respec-

tive forecasting model), on average the judgmental selection is as good as selecting via 

statistics, while humans more often have the advantage of avoiding the worst of the 

candidate models.
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Two strategies are particularly useful for enhancing the judgmental forecasting 

performance. The first strategy is a combination of statistics and judgment (Blattberg 

and Hoch, 1990). This can be applied intuitively to cases where statistical and judg-

mental forecasts have been produced independently, but it works even in cases where 

the managerial input could be affected by the model output, as in judgmental adjust-

ments. Several studies have shown that adjusting the adjustments can lead not only to 

an improved forecasting performance (Fildes et al., 2009; Franses and Legerstee, 2011), 

but also to a better inventory performance (Wang and Petropoulos, 2016). The second 

strategy is the mathematical aggregation of the individual judgments that have been 

produced independently, also known as the “wisdom of crowds” (Surowiecki, 2005). In 

Petropoulos, Kourentzes, Nikolopoulos, and Siemsen’s (2018) study of model selection, 

the aggregation of the selections of five individuals led to a forecasting performance 

that was significantly superior to that of algorithmic selection.

In summary, we observe that, over time, the research focus has shifted from pro-

ducing judgmental forecasts directly to adjusting statistical forecasts and selecting bet-

ween forecasts judgmentally. The value added to the forecasting process by judgment 

increases as we shift further from merely producing a forecast judgmentally.

However, given the exponential increase in the number of series that need to be 

forecast by a modern organisation (for instance, the number of stock-keeping units in a 

large retailer may very well exceed 100,000), it is not always either possible or practical 

to allocate the resources required to manage each series manually.

On the Value of Explanatory Variables

The use of exogenous explanatory variables would seem an obvious way of improving 

the forecast accuracy. That is, rather than relying only on the history of the series that 

we wish to forecast, we can utilise other relevant and available information as well.

In some circumstances, the data from explanatory variables can improve the fore-

cast accuracy significantly. One such situation is electricity demand forecasting, where 

current and past temperatures can be used as explanatory variables (Ben Taieb and 

Hyndman, 2014). The electricity demand is highly sensitive to the ambient tempera-

ture, with hot days leading to the use of air-conditioning and cold days leading to the 

use of heating. Mild days (with temperatures around 20 °C) tend to have the lowest 

electricity demand.

However, often the use of explanatory variables is not as helpful as one might ima-

gine. First, the explanatory variables themselves may need to be forecast. In the case 

of temperatures, good forecasts are available from meteorological services up to a few 

days ahead, and these can be used to help forecast the electricity demand. However, 

in many other cases, forecasting the explanatory variables may be just as difficult as 

forecasting the variable of interest. For example, Ashley (1988) argues that the fore-

casts of many macroeconomic variables are so inaccurate that they should not be used 

as explanatory variables. Ma, Fildes, and Huang (2016) demonstrate that including 
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competitive promotional variables as explanatory variables for retail sales is of limited 

value, but that adding focal variables leads to substantial improvements over time series 

modelling with promotional adjustments.

A second problem arises due to the assumption that the relationships between the 

forecast variable and the explanatory variables will continue. When this assumption 

breaks down, we face model misspecification.

A third issue is that the relationship between the forecast variable and the explana-

tory variables needs to be strong and estimated precisely (Brodie, Danaher, Kumar, and 

Leeflang, 2001). If the relationship is weak, there is little value in including the explan-

atory variables in the model.

It is possible to assess the value of explanatory variables and to test whether either of 

these problems is prevalent by comparing the forecasts from three separate approaches: 

(1) a purely time series approach, ignoring any information that may be available in 

explanatory variables; (2) an ex-post forecast, building a model using explanatory var-

iables but then using the future values of those variables when producing an estimate; 

and (3) an ex-ante forecast, using the same model but substituting the explanatory 

variables with their forecasts.

Athanasopoulos, Hyndman, Song, and Wu (2011) carried out this comparison in 

the context of tourism data, as part of the 2010 tourism forecasting competition. In 

their case, the explanatory variables included the relative CPI and prices between the 

source and destination countries. Not only were the purely time series forecasts better 

than the models that included explanatory variables, but also the ex-ante forecasts were 

better than the ex-post forecasts. This suggests that the relationships between tourism 

numbers and the explanatory variables changed over the course of the study. Further 

supporting this conclusion is the fact that time-varying parameter models did better 

than fixed parameter models. However, the time-varying parameter models did not do 

as well as the purely time series models, showing that the forecasts of the explanatory 

variables were also problematic.

To summarise, explanatory variables can be useful, but only under two specific con-

ditions: (1) when there are accurate forecasts of the explanatory variables available; 

and (2) when the relationships between the forecasts and the explanatory variables are 

likely to continue into the forecast period. Both conditions are satisfied for electricity 

demand, but neither condition is satisfied for tourism demand. Unless both conditions 

are satisfied, time series forecasting methods are better than using explanatory variables.

IV. WHAT WE DON’T KNOW

On Thin/Fat Tails and Black Swans

Another misconception that prevailed in statistical education for a long time was that 

normal distributions could approximate practically all outcomes/events, including the 

errors of statistical models. Furthermore, there was little or no discussion of what 

could be done when normality could not be assured. Now, it is accepted that Gaussian 
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distributions, although extremely useful, are of limited value for approximating some 

areas of application (Cooke, Nieboer, and Misiewicz, 2014; Makridakis and Taleb, 

2009), and in particular those that refer to forecast error distributions, describing the 

uncertainty in forecasting. This paper has emphasized the critical role of uncertainty 

and expressed our conviction that providing forecasts without specifying the levels 

of uncertainty associated with them amounts to nothing more than fortune-telling. 

However, it is one thing to identify uncertainty, but quite another to get prepared to 

face it realistically and effectively. Furthermore, it must be clear that it is not possible 

to deal with uncertainty without either incurring a cost or accepting lower opportu-

nity benefits.

Table I.2 distinguishes four types of events, following Rumsfeld’s classification. In 

Quadrant I, the known/knowns category, the forecasting accuracy depends on the var-

iance (randomness) of the data, and can be assessed from past information. Moreover, 

the uncertainty is well defined and can be measured, usually following a normal distri-

bution with thin tails. In Quadrant II (known/unknowns), which includes events like 

recessions, the accuracy of forecasting cannot be assessed, as the timing of a recession, 

crisis or boom cannot be known and their consequences can vary widely from one 

recession to another. The uncertainty in this quadrant is considerably greater, while its 

implications are much harder to assess than those in Quadrant I. It is characterized by 

fat tails, extending well beyond the three sigmas of the normal curve. A considerable 

problem that amplifies the level of uncertainty is that, during a recession, a forecast, 

such as the sales of a product, moves from Quadrant I to Quadrant II, which increases 

the uncertainty considerably and makes it much harder to prepare to face it.

Things can get still more uncertain in Quadrant III, for two reasons. First, judg-

mental biases influence events; for instance, people fail to address obviously high-

impact dangers before they spiral out of control (Wucker, 2016). Second, it is not 

possible to predict the implications of self-fulfilling and self-defeating prophecies for 

the actions and reactions of market players. This category includes strategy and other 

important decisions where the forecast or the anticipation of an action or plan can 

modify the future course of events, mainly when there is a zero-sum game where 

the pie is fixed. Finally, in Quadrant IV, any form of forecasting is difficult by def-

inition, requiring the analysis and evaluation of past data to determine the extent 

of the uncertainty and risk involved. Taleb, the author of Black Swan (Taleb, 2007), 

is more pessimistic, stating that the only way to be prepared to face black swans 

is by having established antifragile strategies that would allow one to dampen the 

negative consequences of any black swans that may appear. Although other writers 

have suggested insurance and robust strategies for coping with uncertainty and risk, 

Taleb’s work has brought renewed attention to the issue of highly improbable, high-

stakes events and has contributed to making people aware of the need to be pre-

pared to face them, such as, for instance, having enough cash reserves to survive a 

significant financial crisis like that of 2007–2008 or having invested in an adequate 

capacity to handle a boom.
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What needs to be emphasised is that dealing with any uncertainty involves a cost. 

The uncertainty that the sales forecast may be below the actual demand can be dealt 

with by keeping enough inventories, thus avoiding the risk of losing customers. How-

ever, such inventories cost money to keep and require warehouses in which to be 

stored. In other cases, the uncertainty that a share price may decrease can be dealt with 

through diversification, buying baskets of stocks, thereby reducing the chance of large 

losses; however, one then foregoes profits when individual shares increase more than 

the average. Similarly, antifragile actions such as keeping extra cash for unexpected 

crises also involve opportunity costs, as such cash could instead have been invested in 

productive areas to increase income and/or reduce costs and increase profits.

The big challenge, eloquently expressed by Bertrand Russell, is that we need to 

learn to live without the support of comforting fairy tales; he also added that it is per-

haps the chief achievement of philosophy “to teach us how to live without certainty, 

and yet without being paralysed by hesitation.” An investor should not stop investing 

merely because of the risks involved.

On Causality

Since the early years, humans have always been trying to answer the “why” question: 

what are the causal forces behind an observed result. Estimating the statistical corre-

lation between two variables tells us little about the cause–effect relationship between 

them. Their association may be due to a lurking (extraneous) variable, unknown forces, 

or even chance. In the real world, there are just too many intervening, confounding 

and mediating variables, and it is hard to assess their impacts using traditional statistical 

methods. Randomised controlled trials (RCTs) have been long considered the “gold 

Table I.2 Accuracy of Forecasting, Type of Uncertainty, and Extent of Risk
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Uncertainty: Unmeasurable
Risks: Unmanageable except through costly 
antifragile strategies
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standard” in designing scientific experiments for clinical trials. However, as with every 

laboratory experiment, RCTs are limited in the sense that, in most cases, the subjects 

are not observed in their natural environment (medical trials may be an exception). 

Furthermore, RCTs may be quite impossible in cases such as the comparison of two 

national economic policies.

An important step towards defining causality was taken by Granger (1969), who 

proposed a statistical test for determining whether the (lagged) values of one time series 

can be used for predicting the values of another series. Even if it is argued that Granger 

causality only identifies predictive causality (the ability to predict one series based on 

another series), not true causality, it can still be used to identify useful predictors, such 

as promotions as explanatory variables for future sales.

Structural equation models (SEMs) have also been being used for a long time for 

modelling the causal relationships between variables and for assessing unobservable 

constructs. However, the linear-in-nature SEMs make assumptions with regard to 

the model form (which variables are included in the equations) and the distribution 

of the error. Pearl (2000) extends SEMs from linear to nonparametric, which allows 

the total effect to be estimated without any explicit modelling assumptions. Pearl and 

Mackenzie (2018) describe how we can now answer questions about ‘how’ or ‘what 

if I do’ (intervention) and ‘why’ or ‘what if I had done’ (counterfactuals). Two tools 

have been instrumental in these developments. One is a qualitative depiction of the 

model that includes the assumptions and relationships among the variables of interest; 

such graphical depictions are called causal diagrams (Pearl, 1995). The second is the 

development of the causal calculus that allows for interventions by modifying a set 

of functions in the model (Huang and Valtorta, 2012; Pearl, 1993; Shpitser and Pearl, 

2006). These tools provide the means of dealing with situations in which confounders 

and/or mediators would render the methods of traditional statistics and probabilities 

impossible. The theoretical developments of Pearl and his colleagues are yet to be eval-

uated empirically.

On Luck (and Other Factors) versus Skills

A few lucky investing decisions are usually sufficient for stock-pickers to come to 

be regarded as stock market gurus. Similarly, a notoriously bad weather, economic 

or political forecast is sometimes sufficient to destroy the career of an established 

professional. Unfortunately, the human mind tends to focus on the salient and vibrant 

pieces of information that make a story more interesting and compelling. In such cases, 

we should always keep in mind that eventually “expert” stock-pickers’ luck will run 

out. Similarly, a single inaccurate forecast does not make one a bad forecaster. Regres-

sion to the mean has taught us that an excellent landing for pilot trainees is usually 

followed by a worse one, and vice versa. The same applies to the accuracy of forecasts.

Regardless of the convincing evidence of regression to the mean, we humans tend 

to attribute successes to our abilities and skills, but failures to bad luck. Moreover, in the 

event of failures, we are very skillful at inventing stories, theories and explanations for 
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what went wrong and why we did actually know what would have happened (hind-

sight bias). The negative relationship between actual skill/expertise and beliefs in our 

abilities has also been examined extensively, and is termed the Dunning-Kruger effect: 

the least-skilled people tend to over-rate their abilities.

Tetlock, Gardner, and Richards (2015), in their Superforecasting book, enlist the 

qualities of “superforecasters” (individuals that consistently have higher skill/luck 

ratios than regular forecasters). Such qualities include, among others, a 360° “drag-

onfly” view, balancing under- and overreacting to information, balancing under- and 

overconfidence, searching for causal forces, decomposing the problem into smaller, 

more manageable ones, and looking back to evaluate objectively what has happened. 

However, even superstars are allowed to have a bad day from time to time.

If we are in a position to provide our forecasters with the right tools and we allow 

them to learn from their mistakes, then their skills will improve over time. We need 

to convince companies not to operate under a one-big-mistake-and-you’re-out policy 

(Goodwin, 2017). The performances of forecasters should be tracked and monitored 

over time and should be compared to those of other forecasts, either statistical or judg-

mental. Also, linking motivation with an improved accuracy directly could aid the fore-

cast accuracy further (Fildes et al., 2009); regardless of how intuitive this argument 

might be, there are plenty of companies that still operate with motivational schemes 

that directly contradict the need for accuracy, as is the case where bonuses are given to 

salesmen who have exceeded their forecasts.

Goodwin (2017) suggests that, instead of evaluating the outcomes of forecasts based 

solely on their resulting accuracies, we should turn our attention to evaluating the fore-

casting process that was used to produce the forecasts in the first place. This is particu-

larly useful when evaluating forecasts over time is either not feasible or impractical, as 

is the case with one-off forecasts such as the introduction of a significant new product. 

In any case, even if the forecasting process is designed and implemented appropriately, 

we should still expect the forecasts to be ‘off’ in about 1 instance out of 20 assuming 

95% prediction intervals, a scenario which is not that remote.

V. CONCLUSIONS

Although forecasting in the hard sciences can attain remarkable levels of accuracy, such 

is not the case in the social domains, where large errors are possible and all predictions 

are uncertain. Forecasts are indispensable for decisions of which the success depends a 

good deal on the accuracy of these forecasts. This paper provides a survey of the state 

of the art of forecasting in social sciences that is aimed at non-forecasting experts who 

want to be informed on the latest developments in the field, and possibly to figure out 

how to improve the accuracy of their own predictions.

Over time, forecasting has moved from the domains of the religious and the super-

stitious to that of the scientific, accumulating concrete knowledge that is then used to 

improve its theoretical foundation and increase its practical value. The outcome has 
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been enhancements in forecast accuracy and improvements in estimating the uncer-

tainty of its predictions. A major contributor to the advancement of the field has been 

the empirical studies that have provided objective evidence for comparing the accu-

racies of the various methods and validating different hypotheses. Despite all its chal-

lenges, forecasting for social settings has improved a lot over the years.

Our discussions above suggest that more progress needs to be made in forecasting 

under uncertain conditions, such as unstable economic environments or when fat tails 

are present. Also, despite the significant advances that have been achieved in research 

around judgment, there are still many open questions, such as the conditions under 

which judgment is most likely to outperform statistical models and how to minimise 

the negative effects of judgmental heuristics and biases. More empirical studies are 

needed to better understand the added value of collecting data on exogenous variables 

and the domains in which their inclusion in forecasting models is likely to provide prac-

tical improvements in forecasting performances. Another research area that requires 

rigorous empirical investigation is that of causality, and the corresponding theoretical 

developments.

These are areas that future forecasting competitions can focus on. We would like to 

see future competitions include live forecasting tasks for high-profile economic series. 

We would also like to see more competitions exploring the value of exogenous vari-

ables. Competitions focusing on specific domains are also very important. In the past, 

we have seen competitions on neural networks (Crone, Hibon, and Nikolopoulos, 

2011), tourism demand (Athanasopoulos et al., 2011) and energy (Hong, Pinson, and 

Fan, 2014; Hong et al., 2016; Hong, Xie, and Black, 2019); we would also like to see 

competitions that focus on intermittent demand and retailing, among others. Further-

more, it would be great to see more work done on forecasting one-off events, in line 

with the Good Judgment2 project. Last but not least, we need a better understanding 

of how improvements in forecast accuracy translate into ‘profit,’ and how to measure 

the cost of forecast errors.

NOTES

1. Ioannidis’ paper is one of the most viewed/downloaded papers published in PLoS, with more than  
2.3 million views and more than 350K downloads.

2. www.gjopen.com/.
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